
A First Course in Computer Science with C++ Programming – J.P. Baugh

1

LESSON 2

VARIABLES, OPERATORS,

EXPRESSIONS,

AND USER INPUT

PROF. JOHN P. BAUGH
PROFJPBAUGH@GMAIL.COM

PROFJPBAUGH.COM

A First Course in Computer Science with C++ Programming – J.P. Baugh

2

CONTENTS

INTRODUCTION .. 3

Assumptions ... 3

2.1 – Variables and Data Types .. 3

2.1.1 – Numeric Data Types: Integer, Float, and Double ... 4

2.1.2 – Characters ... 5

2.1.3 – Boolean Variables ... 6

2.2 – Constants ... 7

2.3 – Arithmetic Operators ... 8

2.4 – User Input .. 10

2.5 – Summary ... 12

Exercises .. 12

A First Course in Computer Science with C++ Programming – J.P. Baugh

3

INTRODUCTION

In this lesson, we begin formalizing our understanding of fundamental programming concepts. C++ and languages

like it make extensive use of variables, perform operations on these variables and form expressions from them. We

also explore how to obtain input from the user (the person running your program.)

ASSUMPTIONS

I assume that you’ve read through and are comfortable with the material in the previous lesson. You should at least

have a good idea about how to start Visual Studio 2010 and create a new project and a source file. Since this is still

early in your C++ and IDE usage education, it is perfectly okay to refer back to the material in lesson 1. Eventually,

most of the tasks will become second nature.

So, I assume before you start this chapter that you know how to print a simple line of text (such as “Hello World” or

your name) to the console using cout statements, and that you are comfortable with what endl does. If you are

not, go back to lesson 1, and also make sure you can do the exercises at the end of that chapter.

2.1 – VARIABLES AND DATA TYPES

In this section, we explore various data types that are built-in to the C++ language. Later on in this book, we’ll see

that you can use many different complex data types or even create your own. But the fundamental data types that

are provided with C++ are used extensively.

To understand data types better, we must also understand the concept of a variable. A variable is a location

reserved for data in memory. The name of the variable, called its identifier is used to refer to the storage location.

This storage location may have a known value, or the value may not be known immediately.

As an example of data types and variables, consider the following:

int myNum = 5;

The first part of the above statement, int, indicates to the compiler that it should reserve memory for an integer

variable, meaning the variable can hold whole numbers and their opposites (e.g., 10, 4565, -45, 0, 99, -33.) The

identifier of the reserved memory is to be myNum. This is the name to which we will refer when we wish to access

the variable. The last part, = 5; is an assignment statement, followed by the semi-colon to delimit the statement.

Since in this example, the initial value of the variable is assigned, we call this process initializing the variable.

Note that in C++, all statements must end with a semi-colon. This is a rule of C++’s grammar, called the syntax.

The syntax of a programming language consists of the rules for forming expressions in that language, which are

any combination of the symbols of that language. On the other hand, the meaning of the expressions is known as the

semantics of the language.

Another language, like Java, might have identical syntax in certain situations (as is the case with declaring and

assigning the value 5 to an integer named myNum.) Other languages, like Visual Basic might have a statement such

as:

A First Course in Computer Science with C++ Programming – J.P. Baugh

4

Dim myNum as Integer = 5

Notice that the declaration of a variable is quite different in Visual Basic, but it should be clear what this is doing.

Note the absence of the semi-colon as well. The syntax is different, but the essential semantics of the statement is

the same.

Note that you can also declare a variable and define its value at a later time, such as the following:

int myNum;

myNum = 5;

Here, we’ve declared the variable myNum on one line, and then defined its value on the next line.

The fundamental data types that we’ll take a look at now are:

 Integer

 Float

 Double

 Char

 Boolean

2.1.1 – NUMERIC DATA TYPES: INTEGER, FLOAT, AND DOUBLE

The fundamental or primitive numeric data types in C++ are integers, floating point numbers, and doubles. The

syntax for these data types of these values are as follows:

Syntax Description

int Integers are whole numbers and their opposites.

E.g., 45, 5000, 2400, -1234

float Real numbers up to around 7 digits.

E.g., 400.56, 435.5, 2.3, 3.14159

double Real numbers up to around 15 digits.

Same as float, but with higher precision available

Let’s consider an example with integers being added to produce a result. We’ll more formally treat operations

upon integers later, but for now, let’s consider this simple example to see integers in action.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

//Lesson 2.1: Simple Numeric Example

#include <iostream>

using namespace std;

int main()

{

 int a;

 int b;

 int result;

 a = 15;

 b = 20;

 result = a + b;

A First Course in Computer Science with C++ Programming – J.P. Baugh

5

16

17

18

19

20

21

 cout<<"A is: "<<a<<endl;

 cout<<"B is: "<<b<<endl;

 cout<<"The result of A + B is: "<<result<<endl;

 return 0;

}

Code 2.1-1: Simple Numeric Example

Observing the code sample Code 2.1-1, we can see that we declared three integers on lines 7 – 9, namely a,b, and

result. Then, on line 11, we assign the value 15 to a, and then assign the value 20 to b on line 12. On line 14,

we perform arithmetic on variables a and b, and store the result in the variable result.

On lines 16-18 we print out a text string indicating what we’re printing, and then the values of a, b, and result,

respectively.

If you build and run the program, you will see the following output:

A is: 15

B is: 20

The result of A + B is: 35

Press any key to continue . . .

Output for Code 2.1-1

This code prints out essentially what is expected, namely, it echoes the values of the variables a and b, and then

prints out the result.

2.1.2 – CHARACTERS

The two character types that we are interested in are the following:

Syntax Description

char Character. Represents a single character from the ASCII

characters. A variable of type char is 8 bits (1 byte) in

size. E.g., ‘A’, ‘b’, ‘1’

wchar_t Wide character. Represents a single character, and

typically supports a larger character set than standard

ASCII. Often, this is the Unicode set. However, the

size of wchar_t is compiler-specific. It can be as small

as 8 bits, but is often 16 bits or 32 bits depending on the

compiler and platform.

We will focus more on the char type for our purposes here, but essentially everything we do with char can also

be done with wchar_t.

Let us consider the following example:

1 //Lesson 2.1: Character data type

A First Course in Computer Science with C++ Programming – J.P. Baugh

6

2

3

4

5

6

7

8

9

10

11

12

13

14

#include <iostream>

using namespace std;

int main()

{

 char myChar = 'A';

 char anotherChar = 'J';

 cout<<"The first character is : "<<myChar<<" and the second is "

 <<anotherChar<<endl;

 return 0;

}

Code 2.1-2: Character data

The output is as follows:

The first character is : A and the second is J

Press any key to continue . . .

Output for Code 2.1-2

Notice that although the code to print the characters is on two separate lines (namely, lines 10 and 11), the actual

text that is printed to the console is on one line. Why is this?

We are able to break a cout statement onto different lines as long as we don’t put a semicolon until the very end, and

as long as we have individual string literals without a break in the double quotes. For example, if you hit enter

before the double quotation mark at the end of line 10 and moved it to line 11, a compiler error would result.

It should be noted that “under the hood”, characters in C++ are actually integers. They are values in the ASCII

table.

2.1.3 – BOOLEAN VARIABLES

Variables of type bool, called Boolean variables, named after the mathematician George Boole (1815 – 1864), can

only contain one of two values, namely, true or false. Note that the syntax in C++ uses lowercase bool, but

when referring to the full name or speaking of variables that contain truth values, we capitalize Boolean, because

Boolean is derived from a proper name.

This is used extensively by programs where decisions must be made based on certain criteria. In fact, nearly all

large programs written in languages like C++ will contain a great deal of decisions (do I take this code path, or the

other?) We will cover this more extensively when we discuss control structures.

In C++, the value true is equal to the integer 1, and the value false is equal to 0. In this manner, true and false

act similarly to named constants which we will explore later in this lesson.

Let’s consider a simple example of Boolean variables in action.

1

2

3

//Lesson 2.1: Boolean data

#include <iostream>

using namespace std;

A First Course in Computer Science with C++ Programming – J.P. Baugh

7

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

int main()

{

 bool truthVal1 = true;

 bool truthVal2 = false;

 cout<<truthVal1<<endl;

 cout<<truthVal2<<endl;

 cout<<endl;

 cout<<boolalpha<<truthVal1<<endl;

 cout<<truthVal2<<endl;

 return 0;

}

Code 2.1-3: Boolean variables

The output is thus:

1

0

true

false

Press any key to continue . . .

Output for Code 2.1-3

Careful note should be made of the output here. Notice on lines 10 and 11, the resultant output is a 1 and 0,

respectively. This is because, as I stated earlier, true is 1, and false is 0. However, often you want to print out

the actual words true and false to the console. This can be done with a special flag, boolalpha which causes the

output stream to print the strings “true” and “false” instead of the integer equivalent. Notice that we only place the

flag once, on line 14, and it still affects subsequent printing of Boolean data, such as on line 15. This is because

boolalpha is a flag that is said to be sticky. It must be explicitly reset using noboolalpha in order to return

the printing to the default behavior (printing 0s and 1s.)

2.2 – CONSTANTS

In some cases, we may have variables that we don’t want to change during the program. In this case, we use

constants, using the keyword const.

An example might be a sales tax, a constant numeric value like pi, or some other value that we don’t want to be

changed during execution of the program.

1

2

3

4

5

6

7

8

#include <iostream>

using namespace std;

int main()

{

 const double PI = 3.14159;

 cout<<"Pi is : "<<PI<<endl;

A First Course in Computer Science with C++ Programming – J.P. Baugh

8

9

10

11

 return 0;

}

Code 2.2-1: Constant data

In Code 2.2-1, note that we use the keyword const before the data type (double) of our variable PI. Note that I

used capital letters for the identifier of the constant. This is not a syntax requirement (the compiler won’t flag an

error if you don’t use all capital letters), but it is what we call a naming convention. It is useful to name constants

with all capital letters so that throughout the program, if you or another programmer sees a variable name and it is

all caps, you know immediately that it’s a named constant. The output for this is trivial, so let’s move on and

consider what happens if we try to change the value of this constant.

Let’s see what happens if we try to change the value of PI:

1

2

3

4

5

6

7

8

9

10

11

#include <iostream>

using namespace std;

int main()

{

 const double PI = 3.14159;

 PI = 3.1415926;
 cout<<"Pi is : "<<PI<<endl;

 return 0;

}

Code 2.2-2: Trying to change constant data

Line 7 will cause there to be a compiler error when we try to build the program. In Visual Studio 2010, we would

receive the following:

error C3892: 'PI' : you cannot assign to a variable that is const

This error is quite clear. It essentially tells us we can’t modify a variable that is const. This may seem to be a bit

of an annoyance, but can actually be quite useful. Code 2.2-2 may seem fairly trivial, but in large programs, we

might forget and might try to modify a constant when we shouldn’t. By declaring a variable as const, we enforce

maintaining its value the way it was declared.

Note that it is necessary to initialize the value of a const when you declare the variable. With non-constant

variables, you can assign a value on the line in which it is declared, or later on, but by the nature of a constant

variable, you obviously must assign it when you first declare it, as we do on line 6 in Code 2.2-1.

2.3 – ARITHMETIC OPERATORS

In this section, we discuss operators which allow us to perform various operations on variables. Specifically, in this

section we’ll focus on arithmetic operators which allow us to perform – you guessed it – arithmetic on variables

and values. We’ll look at operators involved in logical decisions and comparison in a later chapter. We’ve seen a

simple example earlier in this chapter when we added two integers together. C++ allows for much more than just

addition (which is very fortunate!)

A First Course in Computer Science with C++ Programming – J.P. Baugh

9

The operators that we’re concerned with are binary operators, which means that they take two operands. Operands

are just the variables or values that the operators act upon. Consider the following:

Operation to perform Operator in C++ Description C++ Expression

Addition + Sums its operands a + 7

Subtraction - Subtracts the second operand

from the first operand, returning

the difference

27 – c

Multiplication * Multiplies the operands,

returning the product

2 * PI * r

Division / Divides the first operand by the

second operand and returns the

quotient

30 / 2

Modulus % Divides the first operand by the

second operand and returns the

remainder (residue)

5 % 3

The only arithmetic operator you may not be extremely familiar with is modulus. This returns the remainder after

integer arithmetic. In algebra, and symbol for modulus is typically just mod, as in the following exampls:

5 mod 2 = 1 since 5 / 2 = 2, with a remainder of 1

10 mod 4 = 2 since 10 / 4 = 2, with a remainder of 2

16 mod 2 = 0, since 16 / 2 = 8, with a remainder of 0

It should be very clear that with modulus, we are more concerned with the remainder from the division problem, not

the quotient.

You can string these operators, and the standard order of operation is used, that is:

Parenthesis, (Exponents), Multiplication/Division, Addition/Subtraction

Note that Modulus would actually fall in with Multiplication/Division, so you may have to come up with a new

mnemonic device. Maybe instead of Please Excuse My Dear Aunt Sally, it could be Please Excuse My Dear

Maniacal Aunt Sally.

Let’s look at an example with the operators used extensively:

1

2

3

4

5

6

7

8

9

10

11

#include <iostream>

using namespace std;

int main()

{

 int num1 = 10;

 int num2 = 3;

 cout<<"num1 + num2 = "<<num1+num2<<endl;

 cout<<"num1 - num2 = "<<num1-num2<<endl;

 cout<<"num1 * num2 = "<<num1*num2<<endl;

A First Course in Computer Science with C++ Programming – J.P. Baugh

10

12

13

14

15

16

17

18

 cout<<"num1 / num2 = "<<num1/num2<<endl;

 cout<<"num1 % num2 = "<<num1%num2<<endl;

 cout<<"num1 + 7 * num2 - 3 = "<<num1 + 7 * num2 - 3<<endl;

 return 0;

}

Code 2.3-1: Operators and operands in action

The example Code 2.3-1 shows each of the operators in action on two integers, num1 and num2 on lines 9 – 13.

Then, we mix operators on line 15 to show that you can use larger mathematical expressions. The output is thus:

num1 + num2 = 13

num1 - num2 = 7

num1 * num2 = 30

num1 / num2 = 3

num1 % num2 = 1

num1 + 7 * num2 - 3 = 28

Press any key to continue . . .

Output for Code 2.3-1

2.4 – USER INPUT

We’ve been doing a whole lot of printing to the console lately. In fact, it should be pretty familiar to you by this

point (assuming you’ve been following along in your IDE.) However, programs would be pretty boring, and not

always very useful if the user couldn’t interact with them at all. User input comes in many different forms, ranging

from the mouse clicking and dragging, to keyboard typing, to pushing down the left thumbstick or right trigger on an

Xbox 360 controller.

For our entry into user input in C++, we’re going to be concerned with input from the keyboard, the standard input

device on almost all personal computers.

The best way to learn how to obtain input from the user is with an example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#include <iostream>

using namespace std;

int main()

{

 int age;

 cout<<"Please enter your current age: ";

 cin>>age;

 cout<<endl;

 cout<<"In 10 years, you will be "<<age + 10<<" years old."<<endl;

 return 0;

}

Code 2.4-1: User input

A First Course in Computer Science with C++ Programming – J.P. Baugh

11

Most of what we see in Code 2.4-1 is pretty typical. But there is one major difference. Line 9 has a new variable,

cin, pronounce “see in” which stands for “console in”. Notice also that the symbols following the cin variable are

greater than signs, instead of less than signs (as is the case with cout.) These two greater than signs are called the

stream extraction operator, because data is being extracted from the standard input stream and placed into a

variable. In this case, the variable the data will be placed in is age.

Screenshot of the when Code 2.4-1 is initially run

We can see in the above screenshot that where the cin statement occurs, the program is actually waiting for us to

enter input from the keyboard. Once we do so, and then hit enter, the variable age will have that value stored and

the rest of the program will execute.

The entire output, assuming I enter the value 20 as the age, is as follows:

Please enter your current age: 20

In 10 years, you will be 30 years old.

Press any key to continue . . .

Output for Code 2.4-1 with 20 as the input from keyboard

Now we have our first real interactive program. The user enters some value as input, and a calculation is performed

and printed to the user.

Before you fall asleep, or possibly wonder why we’re dealing with so much math-related stuff, it is important to note

that a very large number of programs – from embedded systems in cars and appliances, to video games on all sorts

of platforms, require many mathematical calculations to be performed constantly. So, mathematics and interaction

with the user are both crucial topics in all levels of programming. Although it is useful to be good with mathematics

when you go into computer science and software engineering, it’s not necessary to be a mathematical whiz. In fact,

as long as you can translate mathematical equations into code, the code will perform the calculat ions for you. This

is good, because even the world’s greatest mathematicians, geniuses and savants cannot perform mathematical

calculations as fast as a computer program can.

A First Course in Computer Science with C++ Programming – J.P. Baugh

12

2.5 – SUMMARY

We accomplished quite a bit in this chapter. We explored how to declare variables and how to use them. Arithmetic

operators were also discussed, and we saw how we can directly write mathematical expressions in cout statements,

or store resultant values in variables.

We learned about integers, real numbers, characters, and Boolean variables. We learned that characters as

essentially just integers “under the hood”. And, finally, we learned how to obtain input from the user via the cin

variable, which uses the standard input device, which is typically the keyboard.

EXERCISES

1. Write a program that solves for y, given a slope (m), a value for x, and the y-intercept (b). Hint: The

famous equation, in slope-intercept form is: y = mx + b. Ask the user for m, x, and b and then print the

resultant y value.

2. Write a program that finds the circumference of a circle, given the radius (entered by the user via the

keyboard.) The equation for circumference is: C = 2πr. Hint: Use a named constant for PI = 3.14159.

3. Write a program that finds the area of a square, when the user enters the length of a side. Hint: A = side *

side.

