Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

LESSON 3
CONTROL STRUCTURES, PART |

INTRODUCTION

In this lesson, we'll discuss the different types of control structures in Java, and take a look at a few examples.
Also, we will look at the modulus operator, and some compound operators. The String data type is also
introduced.

3.1 CONTROL STRUCTURES

The phrase control structure refers to how the source code is organized to control how the different statements
execute (or don’t execute.)

There are three fundamental categories of control structures, one of which we've seen already without knowing
it.

e Sequential (Linear)
e Selection (Branching, Decision)
e |terative (Repetition)

3.1.1 LOGICAL OPERATORS AND COMPARISON OPERATORS

Before we can explore the selection and iterative control structures, we must understand other types of
operators, in addition to the arithmetic operators we learned about the last lesson.

Comparison operators are probably those you are familiar with from basic arithmetic:

' Symbol Name/Description
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
== Is equal to
I= Is NOT equal to

Lesson 2 — Variables and Arithmetic

Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

Logical operators are operators that evaluate to Boolean values, which just means that they evaluate to either
true or false. Sometimes (but not always) these are used in conditions in selection and iterative control

structures.
Symbol Name Meaning
&& Logical AND A binary operator (takes two

operands) that evaluates to true if
and only if both operands are true.

For example:
X> 5 && X < 10 would only evaluate

to true if the value X was strictly in
between 5 and 10.

[Logical OR A binary operator that evaluates to
true if and only if at least one of the
operands is true.

For example:

Age > 10 || Weight > 100 would
evaluate to true if the value of Age
is greater than 10 OR the Weight is
greater than 100, OR even both. As
long as one is true, the entire
statement is true

! Logical NOT A unary operator (takes only one
operator) that negates (reverses)
the truth value of its operand.

For example:

I(x > 10) returns true if x is NOT
greater than 10. In other words x >
10 is evaluated first, and then the !
applies to the entire statement and
reverses its truth value.

3.1.2 SEQUENTIAL CONTROL STRUCTURES

We've already seen sequential control structure, in which code is simply executed one statement after another.
For example, from our last lesson, we had code such as:

System.out.println("Difference: " + diff);
System.out.println("Product: " + prod);
System.out.println("Quotient: + quot);

All three of these lines, which print information to the console, execute one right after the other.

Lesson 2 — Variables and Arithmetic

Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

3.1.3 SELECTION (DECISION) CONTROL STRUCTURES

Selection control structures are structures in which blocks of code are either executed, or not, depending on a
particular condition or conditions.

There are three categories of selection control structures:

e Single selection control structures
o ifstatements

e Double selection control structures
o 1if - elsestatements

e Multiple selection control structures
o switch statements

We'll take a look at the if single selection control structure and the closely related if-else double selection
control structure in this lesson.

A single selection control structure, which is the if statement in Java, either executes something or doesn't.
This requires us to use a comparison of some sort. The best way to observe this is to
see it in action.

1 | public class L2_ControlStructures {

2

3 public static void main(String[] args)

4 {

5 int x = 10;

6 int y = 15;

7

8 if(x > y)

9 {

10 System.out.println("x is greater than y");
11 }

12

13 System.out.println("This will execute no matter what.");
14 }

15 | }

Code3.1-1

The outputis:

This will execute no matter what.

Line 8 uses an if statement and compares x and y using the greater than (>) operator. Since x is not greater than
y, the code block that the if statement applies to does not execute.

Lesson 2 — Variables and Arithmetic

Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

Technically, we can simplify the above code if there is only one statement to be executed. Specifically,

if(x > y)
{

}

System.out.println("x is greater than y");

Can be shortened to:

if(x > y)
System.out.println("x is greater than y");

This shortened syntax however, only works if there is only one statement to execute. | almost always use the
original syntax with the curly braces, { and }, because it is less likely there will be mistakes made. So even if there
is only one statement to be executed, | still use the curly braces. That is often a matter of style, and some people
consider the curly brace syntax with only one executable statement to be too verbose. | consider it a trade-off and
worth the extra couple keystrokes.

The if-else double selection statement is useful when you want to select between two possible courses of
action depending on a condition.

1 | public class L2_ControlStructures {

2

3 public static void main(String[] args)

4 {

5 int x = 10;

6 int y = 15;

7

8 if(x > y)

9 {

10 System.out.println("x is greater than y");

11 }

12 else

13 {

14 System.out.println("x is not greater than y");
15 }

16

17 System.out.println("This will execute no matter what.");
18 }

19 | }

Code 3.1-2

Since x is not greater than y, the code in the else block (line 14) will execute.

Lesson 2 — Variables and Arithmetic

Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

Thus, the output is:

X is not greater than y
This will execute no matter what.

Note that we can also use cascading if-else statements to simulate a multiple-selection scenario. For example:

1 | public class L2_ControlStructures {

2

3 public static void main(String[] args)

4 {

5 int x = 10;

6 int y = 15;

7

8 if(x > y)

9

10 System.out.println("x is greater than y");
11

12 else if (x ==y)

13 {

14 System.out.println("x is equal to y");
15

16 else //x <y

17 {

18 System.out.println("x is less than y");
19 }

20

21 System.out.println("This will execute no matter what.");
22 }

23 | }

Code 3.1-3

The output from this is the same as the previous, but you'll notice three possibilities. The first is on line 8. The
second is on line 12, this time, if the values of x and y are equal. And finally, the condition on line 16 is implied to
be x <y, because there are no other possibilities. An else without any if keyword and a condition is a catch-all,
or default for the remainder of possible values.

3.1.4 ITERATIVE (REPETITION) CONTROL STRUCTURES

Sometimes we want a statement or set of statements to execute more than one time. Instead of writing the
statement over and over again, we can use an iterative (repetition) control structure, often realized in the form
of a looping statement.

There are three primary iterative control structures in Java:

e whileloops
e do-whileloops
e forloops
o Also, a modification of the for loop exists called for-each

In this lesson, we'll only concern ourselves with the while loop. An example will help us here.

Lesson 2 — Variables and Arithmetic

Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

1 | public class L2_ControlStructures {

2

3 public static void main(String[] args)
4 {

5

6 int counter = 9;

7

8 while(counter < 10)

9 {

10 System.out.println("In the loop!");
11 counter = counter + 1;

12 }

13 }

14 | }

Code 3.1-4

In the above code, the while loop and its body is present on lines 8-12. Notice that with a while loop, we often
need a counter of some sort, which we declare on line 6, initializing it to 0. Then, on line 8, we have the while
keyword and the loop continuation condition. What this particular loop continuation condition says is, “As long
as counter is less than 10, keep doing what is in the code block of the body of this loop.”

Now, we have to move from the current value of our counter variable toward the termination condition. If we
don’t update this variable, we get what is called an infinite loop, meaning a loop that keeps going until you close
the program, restart the system, or until memory runs out or some other bad program state occurs and the
operating system terminates the process. It will effectively freeze the program.

Thus, on line 11 we increment the value of counter by one. The syntax we use in Code 3.1-4 says to “take the
value of counter and add 1 to it, then store it back in the counter variable.”

There are however, shorthand versions of this counter incrementing that we can use.

Since using counters and specifically, adding 1 to a counter is so common in programming, there is actually a
special unary operator for that purpose. The following code would be more common that the code in Code 3.1-4.

1 | public class L2_ControlStructures {

2

3 public static void main(String[] args)
4 {

5

6 int counter = 9;

7

8 while(counter < 10)

9 {

10 System.out.println("In the loop!");
11 counter++;

12 }

13 }

14 | }

Code 3.1-5

Notice on line 11, we have the syntax

Lesson 2 — Variables and Arithmetic

Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

| counter++;

This is called the post increment operator, and the only thing it does is add 1 to its operand, in this case,
counter.

There are four different operators like this, known as increment and decrement operators.

Operator (as applied to an operand) Name/Description

W++; Post-increment operator. Returns the value of w, and
then increments w by 1.

++W; Pre-increment operator. Increments w by 1, then
returns the value of w.

W--; Post-decrement operator. Returns the value of w, then
decrements w by 1.

--W; Pre-decrement operator. Decrements w by 1, then
returns the value of w.

Be careful to note the difference between the pre- and post- versions of the operators above. Check out what the
difference between the following code segments is:

1 | public class L2_ControlStructures {

2

3 public static void main(String[] args)

4 {

5

6 int someNum = 5;

7 int anotherNuml = someNum++;

8 int anotherNum2 = ++someNum;

9

10 System.out.println("AnotherNuml = " + anotherNuml);
11 System.out.println("AnotherNum2 = " + anotherNum2);
12

13 }

14 | }

Code 3.1-6

As a related issue, there is another way to add 1 to a variable. We can use the compound assignment operator
for addition:

counter += 1; |

In this case, however, we can put any number as the right-hand operand, since this operator is a binary operator.
Compound assignment operators exist for many different arithmetic operators:

Compound operator Corresponding regular operator Description/Name

+ += Addition.
x +=y; Adds y to the variable x and

Lesson 2 — Variables and Arithmetic

Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

stores the sumin x.

- -= Subtraction.
x-=Yy; Subtractsy from x and stores
that difference in x.

* *= Multiplication.
x *=y; Multiplies x by y and stores
the product in x.

/ /= Division.
x [=y; Divides x by y and stores the
quotient in x.

% %/ Modulus.
x %/ y; Divides x by y and stores the
remainder in x.

An important new thing that we notice in the above table is the modulus operator. The modulus operator by
itself, or in its compound form, returns the remainder (also sometimes called the residue) of a division operation.
While the division operator (/) finds the quotient, the modulus finds the remainder.

3.2 THE Str‘ing DATA TYPE (AND A LITTLE BIT ON MEMORY)

The String class allows us to create objects that hold text strings. There are also some very helpful methods
associated with this class.

1 | public class L2_ControlStructures {

2

3 public static void main(String[] args)
4 {

5

6 String name = "John Baugh";

7

8 System.out.println("Hello there, " + name);
9

10 }

11 | }

So, just like primitive data types like int and double can hold primitive data like integers and real numbers,
respectively, a String object can hold a string.

There is a distinction that is important, however, with how the memory is reserved and addressed with primitive
data types versus class data types.

A variable of a primitive data type directly holds the value you assign it.

Lesson 2 — Variables and Arithmetic

Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

So, consider the following code:

| int valuel = 10;

Then the memory looks like this:

valuel

The variable valuel directly refers to the memory location.

However, with a class data type, the variable you use refers to a memory address which then refers to a value
indirectly.

address
 ——-—

valuel

In this case, address would be some memory location, and then when the value is to be obtained, the system
checks that address and gets the value.

The distinction should be noted, but for our purposes right now, we really don’t have to worry too much about
how the memory is reserved. In Java, a String variable can be accessed in code essentially the same way a
primitive type would be.

3.2.1 SOME HELPFUL METHODS OF THE STRING CLASS

Here are some handy methods of the String class, and what they do:

length Returns the length of the string. In other words, this
method returns the number of characters in the string.

toLowerCase Returns a new string that is the lowercase version of
the string that the calling object contains.

toUpperCase Returns a new string that is the uppercase version of

the string that the calling object contains.

Lesson 2 — Variables and Arithmetic

Pregramming in Java with Eclipse (Kepler) — Prof. John P. Baugh, 2013

All three of these methods can be demonstrated as follows:

1 | public class L2_ControlStructures {

2

3 public static void main(String[] args)

4 {

5

6 String name = "John Baugh";

7

8 int numChars = name.length();

9 String lowerName = name.tolLowerCase();

10 String upperName = name.toUpperCase();

11

12 System.out.println("Original String: " + name);

13 System.out.println("Number of chars: " + numChars);
14 System.out.println("Lower version: " + lowerName);
15 System.out.println("Upper version: " + upperName);
16

17 }

18 | }

The output is as follows:

Original String: John Baugh
Number of chars: 10

Lower version: john baugh
Upper version: JOHN BAUGH

EXERCISES

1. Write a program to print out the counter variable itself in a while loop, from zero (o) up to twenty (20).
Hint: Consider using the <= instead of just <. Also, make sure to change the counter’s value in the body of the loop!

2. Modify the program in Exercise 1 so that if the counter at that iteration is even, “<counter> is even”, and if
it's odd, “<counter> is odd” are printed out. Note that <counter> should be replaced by a value of counter at that
iteration.

Hint: Combine the iterative control structure (while loop) with a selection control structure (if, or if-else)

3. Declare a string with your name in it. Then, write a program to loop 3 times. At each iteration, it should
do something different:

e If counter is o, print out the original string (e.g, name)
e Ifthe counteris 1, print out the name in all upper case
e Ifthe counter is 2, print out the name in all lower case

Lesson 2 — Variables and Arithmetic

